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Unit Commitment (UC)

Two types of decisions to make:

I Which generators to turn on/off and when.

I Generation amount of those “on” generators.

Constraints to respect:

I Generator characteristics (e.g., min-up/-down time, ramping rate
capacity).

I System-wise restrictions (e.g., transmission line capacity, system
spinning reserve).

Settings: system operators, market participants, minimize the total
cost, maximize the revenue, cost functions, and time dependent
start-up costs.

Existing studies for extended formulations:
[Frangioni and Gentile, 2015], [Guan et al., 2018], [Knueven et al., 2018].
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The Network Flow Representation for General Initial
Conditions ([Zhang et al., 2020])
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The Network Flow Representation for General Initial
Conditions

min
T−1∑
t=0

S(t+s0)y10t +
∑

tk∈T K1,t 6=0

S(k − t + 1)y1tk

+
∑

kt∈KT 1

S ′(t − k − 1)y0kt +
∑

tk∈T K1

k∑
s=t

φ1stk

+
T∑
t=1

S ′(−s0 + t − 1)z00t +
∑

tk∈T K0

S(k − t + 1)z1tk

+
∑

kt∈KT 0

S ′(t − k − 1)z0kt +
∑

tk∈T K0

k∑
s=t

φ0stk
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The Network Flow Representation for General Initial
Conditions

s.t.
T∑
t=0

y 1
0t = u0,

T∑
t=0

z00t = 1− u0,

−y 1
0t +

T∑
k=t+`+1

y 0
tk −

t−L+1∑
k=`+1

y 1
kt + y 0

t = 0,∀t ∈ [0,T−1]Z,

T∑
k=min{t+L−1,T}

y 1
tk −

t−`−1∑
k=0

y 0
kt = 0, ∀t ∈ [`+ 1,T ]Z,

−
t−L+1∑
k=1

z1kt +
T∑

k=t+`+1

z0tk + z0t = 0, ∀t ∈ [L,T − 1]Z,

−z00t +
T∑

k=min{t+L−1,T}

z1tk −
t−`−1∑
k=L

z0kt = 0, ∀t ∈ [1,T ]Z,
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The Network Flow Representation for General Initial
Conditions

Cy1tk ≤ q1stk ≤ Cy1tk ,∀s ∈ [t, k]Z,∀tk ∈ T K1,

q1ttk ≤ Vy1tk , ∀tk ∈ T K1, t 6= 0, q1ktk ≤ Vy1tk ,∀tk ∈ T K1, k ≤ T − 1,

q
1(s−1)
tk − q1stk ≤ Vy1tk ,∀s ∈ [t + 1, k]Z,∀tk ∈ T K1,

q1stk − q
1(s−1)
tk ≤ Vy1tk ,∀s ∈ [t + 1, k]Z,∀tk ∈ T K1,

φ1stk−ajq1stk≥bjy1tk ,∀j ∈ [1,N]Z,∀s ∈ [t, k]Z,∀tk ∈T K1,

Cz1tk ≤ q0stk ≤ Cz1tk , ∀s ∈ [t, k]Z, ∀tk ∈ T K0,

q0ttk ≤ Vz1tk , ∀tk ∈ T K0, q0ktk ≤ Vz1tk ,∀tk ∈ T K0, k ≤ T − 1,

q
0(s−1)
tk − q0stk ≤ Vz1tk ,∀s ∈ [t + 1, k]Z,∀tk ∈ T K0,

q0stk − q
0(s−1)
tk ≤ Vz1tk ,∀s ∈ [t + 1, k]Z,∀tk ∈ T K0,

φ0stk−ajq0stk≥bjz1tk ,∀j ∈ [1,N]Z,∀s ∈ [t, k]Z,∀tk ∈T K0,

y , z ≥ 0,
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The Network Flow Representation for General Initial
Conditions

xs=
∑

tk∈T K0,t≤s≤k

q0stk +
∑

tk∈T K1,t≤s≤k

q1stk , ∀s ∈ [1,T ]Z,

us=
∑

tk∈T K0,t≤s≤k

z1tk +
∑

tk∈T K1,t≤s≤k

y1tk , ∀s∈[1,T ]Z,

vs= z00s +
∑

kt∈KT 0,t=s

z0kt +
∑

kt∈KT 1,t=s

y0kt , ∀s ∈ [1,T ]Z.

Remark: O(T 2) binary decision variables and O(T ) constraints for the
network-flow constraints part.
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Convex Hull Pricing

System Optimization Model (UCED problem)

Z ∗QIP = min
xg ,yg ,ug ,∀g∈G

∑
g∈G

fg (xg , yg , ug )

s.t.
∑
g∈G

xg = d ,

(xg , yg , ug )∈ Xg ,∀g ∈ G.

Remark:

1 Transmission constraints can be incorporated similarly.

2 Xg represents the feasible region of commitment and dispatch
decisions for generator g .

See [Gribik et al., 2007], [Schiro et al., 2016], [Wang et al., 2016], [Hua and Baldick, 2017], [Yu et al., 2020], among others.
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Convex Hull Pricing

Profit Maximization for Each Participant

vg (λ) = max
xg ,yg ,ug ,∀g∈G

λT xg − fg (xg , yg , ug )

s.t. (xg , yg , ug ) ∈ Xg ,∀g ∈ G.

Uplift Payment

Ug (λ, x∗g , y
∗
g , u
∗
g ) = vg (λ)− (λT x∗g − fg (x∗g , y

∗
g , u
∗
g )),

where (x∗g , y
∗
g , u
∗
g ) is the optimal solution corresponding to Z ∗QIP.

See [Gribik et al., 2007], [Schiro et al., 2016], [Wang et al., 2016], [Hua and Baldick, 2017], [Yu et al., 2020], among others.
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Convex Hull Pricing

Lagrangian Relaxation and Convex Hull Pricing

maxλ D(λ)=
∑
g∈G

(
min

(xg ,yg ,ug )∈Xg

fg (xg , yg , ug )− λT xg
)

+ λTd .

Remark: An optimal Lagrangian multiplier is an exact convex hull price.

See [Gribik et al., 2007], [Schiro et al., 2016], [Wang et al., 2016], [Hua and Baldick, 2017], [Yu et al., 2020], among others.
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Convex Hull Pricing

Theorem 1:[Hua and Baldick, 2017] Assuming fg ,Xg (xg , yg , ug ) is the convex
envelope of fg (·) taken over Xg , ∀g ∈ G, the optimal dual vector
corresponding to constraint (5b) in the following CHP-Primal formulation
is an exact convex hull price.

Z = min
xg ,yg ,ug ,∀g∈G

∑
g∈G

fg ,Xg (xg , yg , ug ) (5a)

s.t.
∑
g∈G

xg = d , (5b)

(xg , yg , ug ) ∈ conv(Xg ),∀g ∈ G. (5c)

Remark: When the objective function is piecewise linear, the algorithm proposed

in [Yu et al., 2020] can efficiently solve the above formulation by gradually adding the

network-flow based integral formulation for some generators.
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Practical Challenges

Max-up time limit: For some generators in the MISO market, there are
restrictions on maximum time periods that the generator can stay online
because of machine deterioration.

t+Li∑
j=t+1

vj ≥ u(t+Li )
, ∀t ∈ T .

For the extended integral formulation: We can set the maximum length of
each “ON” arc in the network flow graph to accommodate this.
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Practical Challenges

Flexible min-up/-down time limit: For example, participants may submit a
must-run offer for a generator for hours 1− 5 and 10− 24 with the
min-down time limit as 6 hours. This will force UCED to commit this
generator between 6 and 9 even if it is costly. So the min-down time limit
is relaxed to be 1 between hours 6 and 9 so that the generator will not be
committed if it is costly.

t∑
j=t−L+1

κtvj ≤ ut , ∀t ∈ [L + 1, |T |]Z.

|T |∑
j=t−`+1

$tvj ≤ 1− ut−`,∀t ∈ [`+ 1, |T |]Z.

For the extended integral formulation: We can create the “ON” and
“OFF” interval arcs in terms of arc length to accommodate these.
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Practical Challenges

Time-variant parameters: In MISO, market participants are allowed to
offer capacity and ramp rates varying by the hour.

For the extended integral formulation: Make the parameters dynamic
instead of static in the model.
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Case Studies without Transmission Constraints

Table: Test results for MISO without transmission constraints

Case Model
Solution

($)
Uplift Payment

($)
Time

(s)
Save
($)

Optimal
Diff

($/MWh)

C10

MIP 59,195,531 - - - -

0.68

LMP - 11,613 36 - N
TLP 59,193,235 1,899 13 9,714 N
IA1 59,194,229 1,302 108 +597 Y
IA2 59,194,229 1,302 115 +597 Y

IAC1 59,194,229 1,302 �(+0) +597 Y
IAC2 59,194,229 1,302 �(+0) +597 Y
OPT 59,194,229 1,302 9,584 +597 ?

C11

MIP 49,628,808 - - - -

0.38

LMP - 9,918 38 - N
TLP 49,620,385 1,448 17 8,470 N
IA1 49,627,991 817 372 +631 Y
IA2 49,627,991 817 115 +631 Y

IAC1 49,627,991 817 �(+0) +631 Y
IAC2 49,627,991 817 �(+0) +631 Y
OPT 49,627,991 817 16,269 +631 ?
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Case Studies with Transmission Constraints

Table: Test results for MISO with transmission constraints

Case Model
Solution

($)
Uplift Payment

($)
Time

(s)
Save
($)

Optimal
Diff

($/MWh)

C10(T)

MIP 61,717,153 - 584 - -

3.49

LMP - 1,667,967 68 - N
TLP 61,596,521 92,541 69 1,575,426 N
IA1 61,602,290 87,824 1,182 +4,717 Y
IA2 61,602,290 87,824 1,240 +4,717 Y

IAC1 61,602,290 87,824 �(+0) +4,717 Y
IAC2 61,602,290 87,824 �(+0) +4,717 Y
OPT 61,602,290 87,824 81,630 +4,717 ?

C11(T)

MIP 50,071,094 - 271 - -

2.19

LMP - 476,190 58 - N
TLP 50,020,529 24,538 41 451,652 N
IA1 50,030,415 23,498 512 +1,041 N
IA2 50,030,417 23,495 626 +1,044 Y

IAC1 50,030,417 23,495 �(+39) +1,044 Y
IAC2 50,030,417 23,495 �(+0) +1,044 Y
OPT 50,030,417 23,495 31,857 +1,044 ?
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Maximum Daily Starts
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Figure: The Network Flow Graph with Maximum Daily Starts being Two
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Convex Envelope

The convex envelope fc(x) of a function f (x) is defined as the largest
convex function that is below f (x) for all x in the convex set S .

Convex envelope of a piecewise linear cost function of N pieces
[Hua and Baldick, 2017]:

PN =


max

n∈{1,..,N}
anρ+ bn, β = 1,

max
n∈{1,..,N}

anρ+ bnβ, 0 < β < 1,

0, β = 0.

Convex envelope of a quadratic cost function [Hua and Baldick, 2017]:

Q =


aρ2 + bρ+ c , β = 1,

aρ2/β + bρ+ cβ, 0 < β < 1,

0, β = 0.
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Convergence of Convex Envelope

Theorem 2: [Zhang et al., 2020] Suppose PN is a convex piecewise linear cost
function with N pieces that is used for approximating the convex quadratic
cost function Q when β = 1. As the number of pieces N →∞, the
optimal objective value of the CHP-Primal problem (5) with the piecewise
linear convex envelope PN converges to that of (5) with the quadratic
convex envelope Q.

Remark: The convergence of convex envelope is equivalent to the
convergence of the corresponding uplift payment.
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IEEE 118-bus Case Studies

54 generators and 118 buses

Operation periods: 24 hours

Run on a PC with Intel Core i7-6500U CPU at 2.50GHz and 8GB
memory

Optimizer: Gurobi 8.0.1

The required relative MIP gap is set to be 1e-3

Gap =
|Obj Quad− Obj PWL|

Obj Quad
× 100%
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Case Studies on Convergence Rate

Table: Numerical Results on Piecewise Linear Approximation for Cases without
Transmission Constraints

Piece N

Gap Case

Case1 Case2 Case3 Case4 Case5

1 0.96% 0.95% 0.96% 0.97% 0.95%
3 0.17% 0.15% 0.16% 0.16% 0.15%
5 0.12% 0.10% 0.11% 0.11% 0.10%
8 0.09% 0.08% 0.09% 0.09% 0.08%

Obj Quad ($) 1,447,671 1,450,365 1,447,701 1,444,700 1,447,508

Yongpei Guan (UF) Convex Hull Pricing June 2020



Case Studies on Convergence Rate

Table: Numerical Results on Piecewise Linear Approximation for Cases with
Transmission Constraints

Piece N

Gap Case

Case1(T) Case2(T) Case3(T) Case4(T) Case5(T)

1 1.21% 1.20% 1.17% 1.20% 1.19%
3 0.20% 0.21% 0.16% 0.19% 0.19%
5 0.12% 0.13% 0.09% 0.11% 0.11%
8 0.09% 0.10% 0.06% 0.09% 0.08%

Obj Quad ($) 1,458,611 1,461,483 1,458,312 1,455,994 1,458,493
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Case Studies on MIP Performance

Table: Numerical Results on UCED problems without Transmission Constraints

Quad PWL (8)
Gap

Obj($) Time(sec) Obj($) Time(sec)

Case1 1,446,482 7.019 1,446,317 0.969 0.01%
Case2 1,449,478 4.248 1,449,231 1.077 0.02%
Case3 1,446,982 1.286 1,446,463 1.048 0.04%
Case4 1,443,585 3.613 1,443,424 0.946 0.01%
Case5 1,446,669 4.706 1,446,444 1.525 0.02%
Case6 1,229,302 2.226 1,229,152 1.103 0.01%
Case7 1,445,314 3.806 1,445,164 1.207 0.01%
Case8 1,444,865 11.63 1,444,714 0.946 0.01%
Case9 1,446,019 3.853 1,445,834 1.097 0.01%

Case10 1,442,819 6.203 1,442,607 0.897 0.01%
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Case Studies on MIP Performance

Table: Numerical Results on UCED problems with Transmission Constraints

Quad PWL (8)
Gap

Obj($) Time(sec) Obj($) Time(sec)

Case1(T) 1,457,809 57.593 1,457,560 6.316 0.02%
Case2(T) 1,460,905 45.685 1,460,350 5.413 0.04%
Case3(T) 1,458,470 12.522 1,458,222 5.691 0.02%
Case4(T) 1,455,879 46.088 1,456,119 4.454 0.02%
Case5(T) 1,457,868 63.008 1,458,417 6.687 0.04%
Case6(T) 1,237,245 8.201 1,237,112 5.028 0.01%
Case7(T) 1,457,670 11.506 1,457,513 7.247 0.01%
Case8(T) 1,457,254 6.676 1,456,949 5.448 0.02%
Case9(T) 1,457,860 12.257 1,457,896 5.419 0.00%

Case10(T) 1,454,085 36.421 1,454,490 4.278 0.03%
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Other Ongoing Topics

Incorporating maximum energy

Incorporating combined-cycles
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